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ABSTRACT

There is a growing utilization gap between modern hardware and
modern programming languages for data analysis. Due to power
and other constraints, recent processor design has sought improved
performance through increased SIMD and multi-core parallelism.
At the same time, high-level, dynamically typed languages for data
analysis have become popular. These languages emphasize ease of
use and high productivity, but have, in general, low performance
and limited support for exploiting hardware parallelism.

In this paper, we describe Riposte, a new runtime for the R lan-
guage, which bridges this gap. Riposte uses tracing, a technique
commonly used to accelerate scalar code, to dynamically discover
and extract sequences of vector operations from arbitrary R code.
Once extracted, we can fuse traces to eliminate unnecessary mem-
ory traffic, compile them to use hardware SIMD units, and schedule
them to run across multiple cores, allowing us to fully utilize the
available parallelism on modern shared-memory machines. Our
evaluation shows that Riposte can run vector R code near the speed
of hand-optimized C, 5–50x faster than the open source implemen-
tation of R, and can also linearly scale to 32 cores for some tasks.
Across 12 different workloads we achieve an overall average speed-
up of over 150x without explicit programmer parallelization.

Categories and Subject Descriptors

D.3.4 [Processors]: incremental compilers, code generation, inter-
preters
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1. INTRODUCTION
Recent trends in hardware have increased available parallelism

by widening SIMD units, increasing core counts, and adding spe-
cialized hardware accelerators, such as GPUs. These trends chal-
lenge traditional programming models, which focus on scalar code,
leading to interest in developing more effective parallel program-
ming models.
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We approach this challenge from the domain of data analysis
where there is increasing interest in programmer-friendly, high pro-
ductivity languages, such as R, Matlab, and Python. These lan-
guages are now widely used in statistics, data mining, and ma-
chine learning, as well as in application areas such as social sci-
ences, biology, and finance. Analytic languages commonly include
arbitrary-length homogeneous arrays (“vectors”) as basic types in
addition to standard scalar types. Vector types and their associated
operations are a good fit to data analysis workloads which often
contain linear algebra-style arithmetic and substantial processing
of tabular data sets. More importantly, these vector types and oper-
ations provide regions of implicit data parallelism that should allow
users to transparently exploit emerging parallel hardware.

However, the dynamically typed semantics of these languages
make it difficult to extract this data parallelism. Necessary type
checks and other dynamic control flow lead to virtual machine im-
plementations that execute a single vector operation at a time, re-
sulting in large intermediate values that consume memory and band-
width. In such implementations, vector operations are memory-
bound and fail to take advantage of data parallel hardware.

Work on addressing this problem has focused on two approaches:
(1) supplementing or replacing dynamically typed languages with
statically-typed ones that are easier to analyze and compile [9, 23,
25], or (2) exposing parallelism by adding coarse-grained explicit

task parallel constructs to the language [37, 29]. Both of these ap-
proaches give up productivity and familiarity. The second approach
additionally sacrifices fine-grained parallelism, including the use of
SIMD units and GPUs.

A more promising direction is suggested by the recent work on
accelerating languages such as Javascript [1, 13] and Lua [2]. This
work maintains the original semantics of the dynamic language,
but achieves good performance through runtime type specializa-
tion and just-in-time compilation. However, this work has focused
primarily on scalar code, making little use of parallel hardware.

In this paper, we tackle the challenge of efficiently executing a
dynamically-typed data analytic language with vector types. Our
solution uses a trace-based approach to dynamically separate the
complex scalar code, including dynamic type checks and other dif-
ficult semantics, from the simpler vector operations. Once sepa-
rated, we can aggressively optimize the vector operations for mod-
ern parallel hardware—performing vector fusion to eliminate mem-
ory traffic, JIT compiling to SIMD machine code, and scheduling
across multiple cores on a shared memory machine.

We have implemented our tracing approach in Riposte, a proto-
type virtual machine for the R programming language. For code us-
ing R’s vector operations, Riposte achieves a 5–50x speed up over
the open source R interpreter [27] on a single core and demonstrates
near linear scalability for some workloads out to 32 cores.



This paper makes the following contributions:

• We demonstrate that a vector-based, dynamically typed lan-
guage can be an effective and efficient parallel programming
model for data analysis tasks.

• We present a tracing approach inspired by deferred evalu-
ation that can extract simple, compilable vector sequences
from dynamic R code. This is augmented with a dynamic
liveness analysis pass that can eliminate unnecessary inter-
mediate outputs recorded in the trace, decreasing our mem-
ory and bandwidth usage.

• We describe a simple vector virtual machine designed to sup-
port the straight-line vector code produced by tracing and
show that the semantics of the virtual machine make vec-
tor fusion easy. We also describe our VM’s simple just-in-
time compiler and its parallel runtime for shared-memory
machines.

• We validate our approach by comparing Riposte to the exist-
ing open-source R interpreter, showing large speed-ups, and
to hand-written, vectorized, C code, showing performance
within a small factor of optimal. We also show that Riposte
can scale well to 32 cores.

In Section 2, we give a high-level overview of our design through
a worked example. Then in Section 3, we describe our tracing ap-
proach in more detail. Section 4 explains how we perform vector
fusion on the traces. In Section 5 we explain how we optimize, JIT,
and execute the fused code. We evaluate Riposte in Section 6 and
then end with related work and discussion.

2. DESIGN OVERVIEW
We provide an overview of our system by describing how our

trace-based approach will execute the simple program in Figure 1
that computes the average income of males over 40 from a dataset.
This example code, while simple, uses some high-level dynamic
features of R. The incomes_of function takes an arbitrary first-
class filtering function as a parameter; the function males_over_40
is generic and can operate on entire vectors; and the semantics of
R dictate that function arguments be lazily evaluated. As Riposte
executes, it separates this dynamic language functionality from the
vector operations, so that the latter can be executed efficiently.

Riposte interprets the example normally until it reaches line 6.
At this point the interpreter must evaluate the subexpression a >=

40. Since a is the vector age, R’s semantics require that this opera-
tion actually perform 20 million greater-than or equal comparisons.
We could execute this immediately (this is what the open source R
interpreter does), but that commits us to materializing the 20 mil-
lion result values, consuming substantial memory and bandwidth.
Instead, the Riposte interpreter checks the length of the operands
dynamically; if a is a long vector, we delay the >= instruction by
inserting it into a vector trace (lines 1–3 of Figure 2) and inserting
a future into the interpreter’s result slot. Continuing execution, the
operators == and & (line 6) are similarly recorded and delayed. The
interpreter then returns a future from the function males_over_40

instead of an actual value. In addition to simple operations, like
>=, which operate element-wise over the array, we also delay and
record instruction, like filters ([], line 11) and reductions (mean,
line 14), which change the shape of the vector.

Tracing ends when the interpreter encounters print. The final
vector trace, shown in Figure 2, is handed to the JIT to be compiled.
Note that unlike the interpreter’s bytecodes, the instructions in the

1 age <- read.table("ages") #20 million elements

2 gender <- read.table("genders")

3 income <- read.table("incomes")

4

5 males_over_40 <- function(a,g) {

6 a >= 40 & g == 1

7 }

8

9 incomes_of <- function(filter_function) {

10 mask <- filter_function(age,gender)

11 income[mask]

12 }

13

14 print(mean(incomes_of(males_over_40)))

Figure 1: R code that computes the mean income for a sub-

set of a sample, a simple data analysis task. Dynamic types

and control flow (such as the dynamic function call used in

incomes_of) make static analysis of this R code difficult. Trac-

ing permits us to recover blocks of vector code as a first step to

compilation.

n0 : double[1] = constant 40

n1 : double[20M] = load age

n2 : logical[20M] = ge n1 n0

n3 : double[1] = constant 1

n4 : double[20M] = load gender

n5 : logical[20M] = eq n4 n3

n6 : logical[20M] = and n2 n5

n7 : double[20M] = load income

n8 : logical[20M[n6]]= filter n7 n6

n9 : double[1] = mean n8

Figure 2: Vector trace generated from the example code in Fig-

ure 1. Dynamic types and control flow have been eliminated.

Each instruction has both a concrete type (e.g. double) and

shape (e.g. 20M elements).

vector trace contain both the type (e.g. double), and shape of arrays
(e.g. 20 million elements), making it possible to generate efficient
code.

At this point, multiple futures exist in the interpreter’s state, but
some of these futures have become unreachable. The results asso-
ciated with them do not have to be written out, saving memory and
bandwidth. For instance, the variable mask holds a future referenc-
ing the output of value n6 in the trace. But mask is no longer reach-
able because the income_of function has returned, so the output of
n6 does not have to be materialized.

After eliminating dead futures, we fuse together the vector trace
and JIT it to hardware vector instructions (e.g. SSE), shown as
pseudocode in Figure 3. The compiled code is inserted into a
task queue where it is collaboratively completed by worker threads
through task stealing.

Finally, the result replaces the future in the argument to print

and the interpreter resumes computation, printing out the average
income of males over 40.

We can compare Riposte’s trace-based execution of this program
to the standard behavior of R’s interpreter. R’s interpreter will ex-
ecute each vector operation completely before continuing, materi-
alizing intermediates that are as large as the original arrays. In this
case, intermediates are created to hold the temporaries for the re-
sults of the >=, ==, and & operators. Further, R implements the filter



double2 sum = {0,0};

for(int i = 0; i < 20000000; i += 2) {

bool2 a = age[i] >= 40;

bool2 b = gender[i] == 1;

bool2 c = a & b;

double2 new_sum = sum + income[i];

sum = blend(c,new_sum,sum);

}

double mean = (sum[0] + sum[1]) / 20000000;

Figure 3: Pseudocode of the generated machine code from the

trace in Figure 2. It is vectorized and can be executed in parallel

by multiple threads. (blend is the vectorized ternary operator:

?:)

⇒

n0 = load data
n1 = log n0
n2 = mean n1
n3 = sd   n1

x
m
s

env trace
1

x <- log(data)
m <- mean(x)
s <- sd(x)
print(m)
print(s)⇒

x 
m 4.3
s 1.2

env trace

∅

2

x <- log(data)
m <- mean(x)
s <- sd(x)
print(m)
print(s)

Figure 4: The state of the interpreter (1) before and (2) after

executing a trace. The statement print(m) requires the value

for m. The value for s will be used later, so it should also be

materialized to avoid recomputation. The value x is dead, so it

should not be materialized.

operator ([]) by first creating an array of indexes where the filter is
true, and then using it to gather the list of valid incomes, creating
two additional temporaries. Assuming the worst case (where the
filter removes no values), the R version will need to read 9 arrays
of 20 million elements, and allocate/write 5 arrays. In contrast, Ri-
poste will only need to read the 3 input arrays. The result is that
the Riposte trace-based JIT runs this example 6.5 times faster than
standard R.

3. EXTRACTING VECTOR TRACES FROM

DYNAMIC CODE
The following sections describe our vector tracing approach in

more detail. First, we explain the deferred evaluation tracing strat-
egy. Then we describe our liveness analysis which determines the
set of trace outputs that should be materialized.

3.1 Vector Tracing via Deferred Evaluation
Tracing is typically done on scalar code [14]. In this case, one

observes the execution of an early iteration of a loop, and then gen-
erates type-specialized machine code to run the remainder of the
iterations. Scalar operators execute relatively quickly, so interpret-
ing the first few iterations of the loop is feasible. In contrast, the
cost of vector operations is dependent on the size of the vector. For
large vectors, each individual vector operation is itself an expensive

loop. If we waited until the second time we saw such vector oper-
ations before optimizing their execution, we would miss a large
number of critical loops.

This leads us to use a tracing approach based on deferred eval-
uation. Rather than executing vector instructions immediately, we
delay their execution through the creation of futures that reference
entries in the vector trace. This allows us to record and compile
vector operators the first time they are seen. Figure 4 (1) illustrates
this process. After executing the first three instructions, the values
of x, m, and s are futures pointing into the trace rather than con-
crete values. Since recording and compilation have a cost, we only
delay evaluation if the lengths of the operands are long enough to
amortize the overhead introduced. As we discuss in Section 5.2,
this currently occurs at 512 elements.

After creating futures, the interpreter can propagate them through
later instructions. Vector operations that have futures as operands
can be recorded and new futures are created for their output (as with
mean and sd in Figure 4). Futures used in many other operations
can be propagated through unchanged. For example, futures can be
assigned to variables in environments and passed to and returned
from functions. Since the trace entry referenced by the future is
typed, futures can also be used in dynamic dispatch without be-
ing evaluated. Vector operations in loops will be recorded multiple
times as interpreter execution unrolls the loop.

Modifying the interpreter to support tracing may add overhead.
A naïve approach would introduce a future check and a length
check into each vector operation in the interpreter. We found that
this approach can add 20% or more to the runtime of tight scalar
loops. We eliminate the overhead of the future check by includ-
ing futures as a built-in interpreter type and folding the check for
futures into the already existing type check in each operation. We
avoid the cost of the length check by placing it after special-case
dispatch logic for scalar operands. Since we treat the futures as
a type in the interpreter, futures can also be adapted to work with
more sophisticated approaches based on inline caching [8].

The infrastructure to store and execute traced instructions re-
quires additional memory allocations and bookkeeping. To mini-
mize this cost, we limit the total number of traced instructions. If a
trace grows too large, we simply execute it even if a future has not
been requested. This allows us to use fixed-size buffers to store the
trace and all compilation intermediates.

3.2 Selective Materialization through Dynamic
Liveness Analysis

Our vector tracing approach produces blocks of vector code that
we can easily fuse and compile, but it adds an additional complex-
ity. Each trace can contain multiple outputs in the form of unevalu-
ated futures in the interpreter. These outputs may be (1) required by
the interpreter to continue execution, (2) required at a later point,
or (3) dead (i.e. the future represents an intermediate value that is
never used again). Consider Figure 4 (1). The value m is required
by the interpreter in order to execute the next print statement, s
will be needed in the next line, and x is never used again. There are
two problems that arise in handling these outputs.

First, for outputs in group (2) there is a classic time vs. space
trade off. Since they are not yet needed by the interpreter, we could
delay materializing them at the cost of potentially executing the
trace multiple times. Or we could materialize them the first time
the trace runs at the cost of increased storage. We use the latter
approach since it will never materialize more outputs than the stan-
dard R execution strategy. Thus, in Figure 4 (2), after evaluating the
first print statement, the futures for both m and s have been mate-
rialized. In contrast, recomputing values can perform considerably



worse than the current R interpreter in certain cases. In Figure 4,
had we not evaluated s at the same time as m, we would have had
to evaluate x twice, duplicating the expensive log operation.

Second, if we were to materialize dead outputs, we would gen-
erate unnecessary memory traffic. For example, in Figure 4, the
value of x is never used again after the print statement, therefore
there is no need to materialize it at all. If we fail to detect this, we
will allocate and write to an unnecessary result vector.

Since static analysis of R code is difficult, we use a dynamic
liveness analysis pass that determines the set of futures that are
reachable from the interpreter’s state. Unreachable futures are dead
and their outputs can be safely eliminated. This pass is conceptu-
ally very similar to garbage collection. The most straightforward
approach is to give each future a reference count, but we found
that this introduces an unacceptable cost on non-vector code since
each stack-stack or stack-environment move must check whether
the moved value is a future before updating its reference count.

Instead, we use a strategy similar to a tracing garbage collec-
tor. While recording instructions we maintain a conservative root
set containing environments and stack frames that may contain fu-
tures. This can be done entirely off the fast path since this set only
changes when recording an instruction in the vector trace, along
function call boundaries, and in some infrequently-used environ-
ment manipulation operations. Then, before executing the trace,
we traverse the root set looking for futures. Any futures not found
are known to be dead and their outputs from the trace are not mate-
rialized.

4. FUSING VECTOR TRACES
Vector fusion—combining the individual vector operations into

a single loop—is important in getting high performance. In fused
code, intermediate values can be stored in registers. In contrast,
unfused operators store intermediates in memory. For long vectors,
where the intermediates exceed the cache size, fusion will replace
expensive cache misses with reads from a register.

Similar to the Stream Fusion approach [11], Riposte considers
only the subset of potential fusion opportunities that will result in
a single fused loop; we never generate nested loops. We have de-
signed our vector virtual machine to make this fusion easy to derive
from the vector’s shape.

We first describe the design of the vector virtual machine and
then show how we can use the vector shapes to group operations
into fused loops.

4.1 Vector Virtual Machine
Our vector virtual machine supports immutable 1D vectors of

uniform type (currently double, 64-bit integer, and logical,
each of which also include R’s special missing value NA). Each
vector has a shape consisting of an integer length, and optionally,
a filter defined by a logical vector and/or a group by defined by an
integer vector.

It supports three classes of vector operations:

1. generators, e.g. gather (read from an already materialized
vector) or seq (generate an arithmetic sequence),

2. unary, binary, and ternary operations mapped over vector(s),
e.g. sqrt, add, or blend, and

3. reductions, e.g. sum, min, or scatter (write a new vector
out to memory).

Two special operators, filter and groupby semantically change
the shape of their input, but do no actual computation.

Map operators are defined to apply element-wise to all vectors
regardless of shape. Thus, on grouped vectors, map operators ap-
ply to each element of each group, not to the groups themselves.
In contrast, the behavior of reductions depends upon their input
shape. If the shape has a filter, filtered elements are not included in
the reduction. If the shape has a group by, a grouped reduction is
computed. (A grouped scatter produces a list of vectors.)

4.2 Shape-based Fusion
The semantics of the vector virtual machine make it easy to de-

termine that operators on vectors of the same length can always be
fused. Generators, maps, and reductions on simple vectors of the
same length are trivially fuseable since they have the same implicit
loop iteration count and the loops are implicitly aligned. Opera-
tions on filtered vectors can be fused with operations on the unfil-
tered length since this translates to a simple conditional on the filter
inside the fused loop. Similarly, operations on grouped vectors can
also be fused with operations on the ungrouped length. This is
true since maps apply element-wise regardless of the grouping and
reductions can handle the grouping by generating additional code
inside the loop to scatter the output to the correct location for the
group.

Binary and ternary map operations can have operands with dif-
ferent lengths in R. R semantically handles this case by repeating
the shorter operand(s) to the length of the longest one. While it
might be profitable in some cases to fuse such operations, in gen-
eral, repeating the shorter vector in a fused fashion can cause un-
necessary repeated computation. Instead, we handle this case by
always materializing the shorter operand(s) and then fusing with
the longest operand. Note that handling scalar-vector operations is
a special case of this heuristic—the scalar operand is materialized
by the interpreter and fusion continues on the vector.

Given this heuristic, we can implement fusion by grouping vec-
tor operations by the length of their largest input. Since vector
length is known as we record instructions, we implement this group-
ing by recording multiple length-specific traces. If we encounter an
instruction with operands of different lengths, we immediately ex-
ecute the trace associated with the shorter operand and then delay
and record the instruction into the longer operand’s trace.

5. COMPILING AND PARALLELIZING

VECTOR TRACES
Riposte’s just-in-time compiler transforms vector traces into exe-

cutable code. Creating a compiler is typically very involved. How-
ever, an advantage of a trace-based approach is that vector traces
have no control flow, simplifying the compilation process. In the
following two sections, we describe our simple vector JIT. Then
in the final section, we discuss scheduling the compiled traces on
multiple cores.

5.1 Optimization
Since vector traces contain no control flow, standard optimiza-

tions such as constant propagation, algebraic simplification, com-
mon subexpression elimination, and dead code elimination can be
implemented as single passes over the vector trace.

In addition to improving user-written expressions, these passes
also improve less-than-optimal code generated by our tracing ap-
proach. For example, R vectors use 1-based indexing, but our vec-
tor language uses 0-based indexing for easier compilation. This re-
sults in traces littered with code to add and subtract 1. The algebraic
simplification pass eliminates most of these. Similarly, our tracing
based approach unrolls loops, which can generate many replicates



of the body of the loop. Common subexpression elimination re-
moves copies of loop invariant code.

5.2 JIT
Code generation for straight-line vector traces is simple enough

that we emit x86-64 machine code directly. Our fusion approach
guarantees that each trace will only contain operands of a single
length, and we only have to generate code for a single loop over
the vector length. We can generate the body of this loop by re-
placing the each variable-length vector operation in the trace with
a fixed-length hardware equivalent. For the map operations this is
often a single SSE instruction. But for operations not supported by
the hardware instruction set, we either inline short instruction se-
quences or emit calls to vectorized functions. Generators are also
relatively straightforward, though they must update loop-carried
dependencies.

The code generation for reductions is more complicated due to
filters and groupbys. A standard way to handle filters in vec-
tor code is to use predicated instructions that are disabled when the
filter is false. However, x86-64 has poor support for predicated in-
structions. Instead, we execute all map operations regardless of the
filter state, and only predicate the reductions, via an SSE blend op-
eration or a branch. When the cardinality of a reduction’s groupby
is low, or there is no groupby, we maintain multiple aggregates,
one per vector lane per group, allowing the reductions to be vector-
ized. For large cardinality reductions, this increase in the working
set size can negatively impact performance; so, in these cases, we
serialize the reductions and only store a single aggregate per group.

Register allocation is accomplished using the linear scan algo-
rithm [26]. For operations whose output needs to be stored into
a live future, we generate store instructions as needed. Addition-
ally, we JIT a loop header that initializes loop-carried state, such as
reduction variables or sequence iterators, in the thread-local stack
space.

As a further simplification, we do not attempt to reuse vector
traces. This means that the JIT does not have to generate code to
guard dynamic control flow decisions or to restore the interpreter to
the correct state when a guard fails. For sufficiently long vectors,
the overhead of compilation is still low because it is amortized over
the vector length. For the current implementation, the break-even
point occurs at 512 elements. We see only incremental benefits in
optimizing for vectors shorter than this. Such vectors will fit in
the L1 cache, so they benefit less from fusion; they may be better
addressed using standard scalar compilation techniques.

As an alternative to JIT compiling vector traces, we considered
strip-mining [7, 12, 35]. However, in a preliminary experiment, we
found that strip-mining performed 33% worse than JIT compilation
on our BLACK-SCHOLES benchmark. Similarly, other work has re-
ported that strip-mining performs 2 times slower than hand-written
compiled code [7].

5.3 Scheduling to Multicore
The compiled code consists of a single fully fused loop which is

nearly data-parallel. To partition the iterations of this loop across
multiple threads there are two cases we have to handle specially:
generators and reductions. Vector generation functions (e.g. seq)
may have loop-carried dependencies. When we partition the loop
iterations we have to initialize the loop-carried dependencies to
their proper state. This is straightforward for the set of generators
we support. We only support reductions that are commutative and
associative, making them easy to parallelize. Each thread allocates
separate space in different cache lines to store partial reductions so
that the threads operate independently and avoid false sharing. Af-

Table 1: Workloads

BLACK-SCHOLES

Compute 10M options

DATA CLEANING

On 20M element vector: filter invalid values, compute z-
scores, and count outliers

FILTER -D

7-element 1-D convolution applied to a 10M element vector

HISTOGRAM

100M element vector with 100 distinct values

K-MEANS

1M 2D data points, 5 means

LOGISTIC REGRESSION

Compute via gradient descent on 30 continuous predictors
with 1M data points

MANDELBROT

2048×1538 resolution in the domain (−2,−1)× (1,1)

COVARIANCE MATRIX

50 variables with 1M data points

RAY-SPHERE INTERSECTION

Distance to the closest intersection of a ray with 10M spheres

SAMPLING MIXTURE OF NORMALS

Draw 10M samples from mixture of 3 normals using CDF
inversion

SPARSE MATRIX-VECTOR MULTIPLICATION

500K×500K matrix with 20M non-zero entries

TPC-H QUERY 

Database query with filter and aggregations (Scale Factor 10
= ∼60M rows)

ter the computation has finished, the separate partial reductions are
then aggregated together.

We don’t yet support the output of filtered or grouped vectors
without an aggregate when executing in multiple threads. Doing so
correctly requires a parallel prefix scan which is not yet included in
our vector language.

The fused loop is scheduled on multiple cores using Lazy Binary
Splitting [33], a recent work stealing-based scheduling strategy that
attempts to dynamically discover an appropriate task block size. In
our experience, this has been quite robust.

6. EVALUATION
In this section we evaluate our tracing-based approach. First, we

demonstrate that our trace-based vector fusion and liveness analysis
can eliminate a substantial fraction of memory accesses by com-
paring Riposte with the open source implementation of R, which
does no fusion. We show that eliminating these memory accesses
achieves a substantial speed-up. Next, we compare Riposte to vec-
torized C code executing the same benchmarks to show that we
can effectively utilize vector hardware and that vector traces can
achieve very high absolute performance. Finally, we examine the
scalability of our trace scheduling and show that leveraging the im-
plicit parallelism in R vector code results in a substantial perfor-
mance improvement.

We use a set of twelve workloads, shown in Table 1, covering a
range of problem domains. Riposte and the open source R imple-
mentation execute nearly the same high-level R code for each work-
load. (In a couple cases, we had to write non-idiomatic R in order
to work around severe performance limitations of its blend opera-
tion (ifelse). And in one case, we worked around the fact that
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Riposte memory traffic as a percentage of R’s

K−MEANS

MANDELBROT

SAMPLE NORMAL

FILTER 1-D

BLACK-SCHOLES

RAY-SPHERE

SPARSE MV

COV. MATRIX

TPC-H QUERY 1

DATA CLEANING

LOGISTIC REG.

HISTOGRAM

Figure 5: Vector fusion substantially reduces Riposte’s main

memory traffic (total number of requests to main memory,

measured using hardware counters) compared to R.

Riposte does not yet store futures in objects.) Since we are eval-
uating the use of vector primitives, we restricted the set of work-
loads to ones that can be written in vectorized R code. Thus, none
of these benchmarks are bottlenecked on interpreter performance.
Additionally, to clearly evaluate the benefits of runtime fusion of
vector code, we also avoided calling R standard library functions
which implement hand-fused sequences in C code.

To make the comparisons as fair as possible, we compiled R
2.14.2, Riposte, and our C implementations of the workloads us-
ing ICC 12.0.0. We used the flags -O3 and -fp-model fast to
enable ICC’s floating-point optimizations and loop autovectoriza-
tion. ICC failed to autovectorize half of our C implementations. We
hand vectorized these cases using SSE intrinsics or the Intel SPMD
Program Compiler (ISPC) [24]. We also spot-checked the gener-
ated assembly of R’s vector math operations to ensure that they
were correctly autovectorized. The system we used for evaluation
is a shared memory machine with 4 8-core Nehalem-EX X7560
processors running at 2.2Ghz and 128GB of RAM. All measure-
ments of speed-up are reported using the minimum execution time
of 3 runs of the reference code and the maximum execution time of
3 runs of Riposte.

6.1 Effectiveness of Fusion
The goal of vector fusion is to reduce memory traffic by elimi-

nating intermediates and by rearranging data access patterns to be
more cache friendly. Figure 5 shows the main memory traffic of
Riposte as a fraction of the main memory traffic of R for all our
benchmarks, measured using the offcore_response_0 counter on In-
tel Nehalem chips. Fusion succeeds in eliminating a substantial
portion of the memory traffic. Both K-MEANS and MANDELBROT

are iterative workloads and R has very high memory traffic as it
repeatedly cycles the working set in and out of cache. In Riposte,
fusion succeeds in reducing the working set below the L3 cache
size. Thus, Riposte only touches main memory once, on the first
iteration, for a substantially memory traffic reduction. In contrast,
the HISTOGRAM workload is a single pass. Riposte is able to elim-
inate one intermediate (1 store + 1 read), but still must do the initial
read, resulting in a comparatively high 33% traffic rate.

Figure 6 shows the speed of Riposte normalized to R. Speed-ups
range from 5x to more than 50x. The harmonic mean speed up
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Figure 6: Performance of Riposte (including all interpreter and

JIT overhead) normalized to R. The red line is at 1x (no speed-

up). Riposte outperforms R on all benchmarks.

across all 12 workloads is 14.4x. The speed-up is roughly a func-
tion of the percent of memory accesses eliminated by fusion (note
the inverse relationship between Figures 5 and 6. However, other
factors such as the memory access pattern resulting from fusion and
the task-specific instruction mix also affect the speed up.

For example, for workloads such as FILTER -D, K-MEANS, and
MANDELBROT, which have a large number of simple math oper-
ators and a small set of input vectors, Riposte achieves a 35–50x
speed-up. When R runs these workloads, it is extremely memory
bound and there is lots of room for improvement. For other work-
loads that have a much larger input set, like COVARIANCE MA-
TRIX and LOGISTIC REGRESSION, the improvements are smaller
(5–20x) since the fraction of memory traffic that fusion can elimi-
nate is lower.

6.2 Absolute Performance
We next compare Riposte to vectorized C implementations of

the same tasks to evaluate absolute performance. Figure 7 shows
the performance of Riposte normalized to vectorized C. The har-
monic mean speed-up across all workloads is 0.74x. Despite the
simplicity of our JIT compiler, Riposte performs almost as well
as well-written vectorized C code, which indicates that Riposte is
getting most of the speed-up possible over R.

The two slowest workloads, MANDELBROT and SAMPLE NOR-
MAL, suffer from our lack of support for true conditional opera-
tions. We currently always generate branches as blend operations
which require evaluating both sides of the branch. This is costly
in these workloads because the amount of work performed in the
conditional is not trivial. The lower performance of the TPC-H

workload is caused by missed opportunities for common subex-
pression elimination because we don’t decompose grouped reduc-
tion instructions.

To better understand the pay off of vectorization, we also com-
pared Riposte to unvectorized C implementations (Figure 8). Since
Riposte primarily operates on doubles and 64-bit integers, on SSE
the maximum speed up possible is 2x. We achieve a more mod-
erate 10%–50% improvement on some workloads compared to C.
As vector lengths increase, we expect the payoff of vectorization to
grow.
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Figure 7: Performance of Riposte (including all interpreter and

JIT overhead) normalized to vectorized C implementations.

On average, Riposte performs within a small factor of C.

6.3 Scalability
Finally, we examine the scalability of Riposte, shown in Fig-

ure 9. Most workloads demonstrate reasonable scalability out to 16
or 32 cores; some even benefit from hyper-threading.

The operating system limits scaling in DATA CLEANING and FIL-
TER -D. Both read in a large vector and output a vector of similar
size. Creating the new vector requires allocating fresh pages—both
examples spend 30–50% of their time allocating pages. Scaling is
limited by the performance of the page allocator in Linux, which
has been shown to only scale to 8 cores [34].

SPARSE MATRIX-VECTOR MULTIPLICATION scales very poorly
due to our simple parallel reduction strategy. We allocate sepa-
rate output vectors for each thread which are merged at the end.
As the number of threads grows, the amount of memory allocated
for the reduction exceeds the L3 cache and performance degrades.
High-cardinality reductions are a well-known challenge in parallel
runtime design [36].

Riposte does not always find the maximum amount of fusion
possible. For instance, the loops in COVARIANCE MATRIX are too
long to unroll completely meaning that Riposte must execute the
loops in multiple traces. While this introduces only minor over-
head into single-threaded code, it creates a synchronization point
between each trace, which limits scaling. In the standard R imple-
mentation, parallelizing individual operations yields only limited
improvements because of this problem [31].

Excluding the outlying SPARSE MATRIX-VECTOR MULTIPLICA-
TION benchmark, Riposte’s overall speed up on 32 threads com-
pared to R’s scalar performance ranges from 55–670x with a har-
monic mean of 155x.

7. RELATED WORK
Previous work has applied trace-based just-in-time compilation

to optimize scalar code. The Dynamo optimization system traced
native machine code to perform runtime optimizations [6]. Gal et
al. used tracing to optimize Java bytecodes [14]. Tracing has also
been used to accelerate dynamic languages such as Javascript [1,
13] or Lua [2]. Riposte adapts these techniques to vector code.

Delaying array operations in a dynamic language in order to ex-
pose opportunities for later optimization was a feature of the APL
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Figure 8: Performance of Riposte normalized to unvectorized

C. Riposte’s support for 2-wide SSE operations provides mod-

erate performance gains on some, but not all, workloads.

Machine [4, 19, 16], a proposed (but never built) physical machine
with an APL-like instruction set. Riposte demonstrates that a sim-
ilar approach, designed for modern hardware, can be effectively
implemented in software.

Other work has applied vector optimizations in the context of
statically compiled languages. Intel’s Array Building Blocks [21]
and the PeakStream platform [22] add support for array-based pro-
gramming to C++ through a JIT compiler. Data-parallel Haskell, a
compiled functional language, implements nested array operations
using a vector machine that supports segmented operations [23].
Coutts et al. use Haskell’s algebraic data-types and user-defined
rewrite rules to implement static fusion of a number of “stream-
able” operations [11]. Keller et al. apply loop fusion on a functional
representation of delayed arrays written in Haskell, and transpar-
ently parallelize the code [17].

Morandat et al. have studied the semantics and performance of
the current open source R implementation [20]. Schmidberger et al.
provide a good analysis of existing parallel libraries for R [29].
There are a number of other projects that have tried to improve
the implementation of the R language. Tierney has developed a
new bytecode interpreter for R that is progressively replacing the
existing AST-walking interpreter in the standard distribution [32].
It improves the performance of scalar code. Tierney has also ex-
plored hand-fusion and parallelization of R code [31]. Milborrow
has developed an experimental just-in-time compiler for R that can
accelerate scalar arithmetic loops [3]. Garvin has developed an R-
to-C cross compiler that also focuses on scalar performance. The
CXXR project is refactoring the open source R implementation to
ease future development, but it has not yet focused on performance
improvements [28]. While this paper was in submission, NVIDIA
released an experimental R-to-PTX compiler based on an LLVM
backend [15]. Like Riposte, it does aggressive vector fusion, but is
currently limited to compiling simple sequences of map operations.

The growth of big data analysis problems has created interest in
making other higher-level data analytic languages more scalable.
McVM [10] is a function-based JIT for Matlab. It has been used to
explore static [18] and profile-based [5] optimization techniques to
Matlab. Copperhead [9] compiles a statically analyzable subset of
Python to GPUs.
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high-cardinality multi-threaded reductions in our current implementation.

8. CONCLUSION
We have presented a trace-based approach for efficiently exe-

cuting dynamically typed data analytic languages on modern hard-
ware. The resulting virtual machine performs 5–50x faster than
standard R—nearly as well as vectorized C code—and can scale
well on multicore, shared memory machines. Thus, without chang-
ing to a statically-typed programming language or having to explic-
itly parallelize, R programmers using Riposte can see an overall
speed-up of two orders of magnitude on interesting data analytic
workloads.

Substantial work remains to be done to improve our Riposte im-
plementation. We want to address the limitations of Riposte’s cur-
rent parallel runtime highlighted in our evaluation by adding sup-
port for prefix scans and a better high-cardinality reduction imple-
mentation [36]. We also want to increase the set of operators that
can be delayed. This should increase the average length of traces
and thus the benefits from fusion, as well as increase the likelihood
that we will be able to identify futures as dead, decreasing unnec-
essary memory usage.

Even though Riposte currently uses an interpreter to run scalar
code, we want to integrate our vector virtual machine with modern
techniques for executing dynamic scalar code such as function- or
trace-based JITs. We will also continue to improve the performance
of our JIT compiler (currently 90% of its time is spent in the opti-
mization passes), allowing us to compile shorter vectors profitably.
These two directions will permit us to experiment with efficiently
supporting short vector code and mixed scalar/vector code.

Finally, we plan to expand the design of our vector virtual ma-
chine to support compilation to newer vector architectures such as
GPUs and Intel’s AVX or MIC [30] architectures, and to consider
the issues of scheduling vector code on distributed memory clus-
ters.

In summary, Riposte allows data analysts to leverage emerging
hardware trends to improve the performance and scale of their anal-
yses while continuing to code easily and productively.
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